Soit une fonction f définie sur l'intervalle de définition Df.
Prenons un point a quelconque de Df. On dit que :
f(a) est l'image de a par la fonction f.
a est un antécédent de f(a) par la fonction f.
Chaque point de l'intervalle de définition a une et une seule image, tandis qu'un point de l'ensemble image peut avoir aucun, un ou plusieurs antécédent(s).
II. Sens de variation
a,b I, a < b alors f(a) - f(b) 0
Une fonction est dite croissante sur un intervalle I si :
Pour tout a et b appartenant à I, avec a < b on a f(a) f(b).
Cela revient donc à voir si f(b) - f(a) 0.
Une fonction sera dite décroissante sur I si :
Pour tout a et b appartenant à I, avec a < b on a f(a) f(b).
Cela revient donc à voir si f(b) - f(a) 0.
Remarque : en remplacant les signes et par des inégalités strictes, on obtient les définitions de fonctions strictement croissantes ou décroissantes ( = pas de palier ).
Publié par Tom_Pascal
le
ceci n'est qu'un extrait
Pour visualiser la totalité des cours vous devez vous inscrire / connecter (GRATUIT) Inscription Gratuitese connecter
Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !